Enrollment No:	Exam Seat No:

C.U.SHAH UNIVERSITY

Summer Examination-2018

Subject Name: Digital Circuits

Subject Code: 4TE03DCI1 Branch: B.Tech (Electrical)

Semester: 3 Date: 26/03/2018 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:		(4.A)
				(14)
	a)	a) The NAND gate output will be low if the two inputs are		
		(A) 00	(B) 01	01
		(C) 10	(D) 11	
	b)	What is the binary equivalent of the decimal number 368		
		(A) 101110000	(B) 110110000	01
		(C) 111010000	(D) 111100000	
	c)	The decimal equivalent of hex number 1A53 is		
		(A) 6793	(B) 6739	01
		(C) 6973	(D) 6379	
	d)	$(734)_8 = (\underline{\hspace{1cm}})_{16}$		
		(A) C 1 D	(B) D C 1	01
		(C) 1 C D	(D) 1 D C	
	e)	e) The number of control lines for a 8– to –1 multiplexer is		
		(A) 2	(B) 3	01
		(C) 4	(D) 5	
	f) How many Flip-Flops are required for mod–16 counter?		counter?	
		(A) 5	(B) 6	01
		(C) 3	(D) 4	
	g) EPROM contents can be erased by exposing it to			0.4
		(A) Ultraviolet rays.	(B) Infrared rays.	01
		(C) Burst of microwaves.	(D) Intense heat radiations.	
	h)	h) The hexadecimal number 'A0' has the decimal value equivalent to		0.1
		(A) 80	(B) 256	01
		(C) 100	(D) 160	

	1)	The digital logic failing which has infilling po	-	0.1
		(A) TTL	(B) RTL	01
	• \	(C) DTL	(D) CMOS	
	j)	The output of a logic gate is 1 when all its input		Λ1
		(A) a NAND or an EX-OR	(B) an OR or an EX-NOR	01
	1-1	(C) an AND or an EX-OR	(D) a NOR or an EX-NOR	
	k)	The speed of conversion is maximum in	(D) Donallal commanative A/D conventor	01
		(A) Successive-approximation A/D converter.	(B) Parallel-comparative A/D converter.	UI
	1)	(C) Counter ramp A/D converter.	(D) Dual-slope A/D converter.	
	l)	The 2's complement of the number 1101101 is	(D) 0111110	01
		(A) 0101110	(B) 0111110 (D) 0010011	UI
)	(C) 0110010 When simplified with Peolean Algebra (v. 1 v.)	(D) 0010011	
	m)	When simplified with Boolean Algebra $(x + y)$	•	01
		(A) x $(C) x(1 + xxx)$	(B) x + x(y + z)	UI
	>	(C) $x(1 + yz)$	(D) $x + yz$	
	n)	The gates required to build a half adder are	(D) EV OD cate and OD cate	01
		(A) EX-OR gate and NOR gate	(B) EX-OR gate and OR gate(D) Four NAND gates.	UI
		(C) EX-OR gate and AND gate	(D) Four NAND gates.	
A tten	nnt ai	ny four questions from Q-2 to Q-8		
Q-2	ipi a	Attempt all questions		/a 4
Q- <u>2</u>		Attempt an questions		(14)
	a)	Simplify: a) $Y = (A+C)(A+D)(B+C)(B+D)$		07
		b) $Y = (B+BC)(B+B'C)(B+D)$		
	b)	What is meant by multiplexer? Explain with dia	gram and truth table for the Operation of	07
	U)	4-to-1 line multiplexer.	gram and truth table for the Operation of	07
		The multiplexer.		
Q-3		Attempt all questions		(1.1)
	`			(14)
	a)	Explain half and full adders in detail.		07
	b)	Explain the working of the Master Slave J K flip	p-flop with necessary logic diagram.	07
Q-4		Attempt all questions		(14)
	a)	What is meant by decoder? Explain 3-to-8 line of	decoder with diagram and truth table.	07
	b)	With neat diagram explain the operation of 4- b	it serial- in-serial –out register. Draw the	07
		timing diagram and give its truth table.		
Q-5		Attempt all questions		/.a. a.
(ノ-)		ATTENIAL SILAMESTIANS		(14)
~ ·		• •		
<i>ر</i> ک	a)	Explain the working of 4 bit asynchronous up co	ounter.	07

Q-6		Attempt all questions	(14)
	a)	Describe S-R flip-flop and its applications.	07
	b)	State and explain De Morgan's theorem with the use of logic gates.	07
Q-7		Attempt all questions	(14)
	a)	Explain TTL logic families in detail.	07
	b)	Simplify with K- Map in SOP and POS: $F(A, B, C, D) = \Sigma (0, 1, 2, 5, 8, 9, 10)$	07
Q-8		Attempt all questions	(14)
	a)	Which gates are known as Universal Gates? Justify them as Universal gates with the help of circuit diagrams and truth tables.	07
	b)	Write a technical note on Johnson counter.	07